

MODELAGEM E VALIDAÇÃO DO CENÁRIO DE UM ACELERADOR LINEAR CLINAC CX VARIAN UTILIZANDO O MCNPX

Maria Tayane Barroso Dos Santos ¹ Jonas Pereira Dos Santos Filho² Walmir Belinato ³ Aurélio Wildson Teixeira De Noronha⁴ Cinthia Marques Magalhães Paschoal ⁵

RESUMO

A radioterapia representa nos dias atuais um importante método de tratamento de câncer, utilizando radiações ionizantes para tratar e prevenir determinadas doenças, embora apesar dos seus benefícios, é necessário que haja uma atenção especial no que se refere à distribuição de dose nos pacientes em tratamento. Uma importante ferramenta utilizada para avaliar essa distribuição é o Método Monte Carlo que se baseia em modelos probabilísticos de modelagem computacional, sendo particularmente útil em problemas complexos. Na radioterapia esse método é utilizado como ferramenta para a modelagem e a visualização de geometrias complexas. No entanto, antes de qualquer resultado de simulações ser utilizado é necessário que seja realizada a validação do cenário em que o tratamento é realizado. Isso é feito através da comparação entre os dados experimentais, que podem ser fornecidos por um hospital ou clínica, e dados simulados fornecidos pelo código MCNPX. Assim, este trabalho teve como proposta a modelagem e a validação de um cenário de radioterapia que contém um acelerador linear Clinac CX Varian utilizando o código MCNPX. Para essa validação foi realizada a modelagem da sala de radioterapia, obtida a modelagem do cabeçote do acelerador linear da Varian, realizada a modelagem do simulador de água e realizada a modelagem da câmara de ionização. Por seguinte foi inserido o acelerador linear na sala modelada. Posteriormente foram realizadas simulações para obter a curva PDP simulada e assim ser possível validar o cenário. Quando as curvas foram comparadas notou-se que elas não estavam coincidindo, fazendo assim com que o cenário ainda não fosse validado. Acredita-se que o erro esteja na fonte que gera o feixe e pretende-se em pesquisas futuras corrigir o problema e assim validar o cenário.

Palavras-chave: Acelerador linear; Monte Carlo; MCNPX.

Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Ciências Exatas e da Natureza, Discente, mtayane.12@aluno.unilab.edu.br¹

Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Ciências Exatas e da Natureza, Discente, jonas365pereira@gmail.com²

Instituto Federal da Bahia, Campus Vitória da Conquista, Docente, wbfisica@gmail.com³

Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Ciências Exatas e da Natureza, Docente, aurelionoronha@unilab.edu.br⁴

Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Ciências Exatas e da Natureza, Docente, cinthiam.paschoal@unilab.edu.br⁵

INTRODUÇÃO

Segundo a OMS, o câncer é uma das maiores causa de mortes no mundo, a estimativa é que em 2015 ocorram aproximadamente 8,8 milhões de mortes (IARC, 2014). Assim, a radioterapia é uma ferramenta importante no tratamento do câncer, possibilitando tanto a cura do câncer quanto a melhora na qualidade de vida dos pacientes em casos avançados. Desta forma, os aceleradores lineares (linacs) tem um papel fundamental na medicina, permitindo a realização de múltiplos tratamentos (CANCINO, 2016).

O Método Monte Carlo (MC) é uma abordagem quantitativa que utiliza estatística e computação para realizar simulações. Essa técnica envolve a criação de cenários que se assemelham o máximo possível aos sistemas reais e se apoia em métodos estatísticos que incorporam elementos aleatórios. O MC é especialmente útil para lidar com problemas relacionados a processos estocásticos, onde a aleatoriedade desempenha um papel significativo na modelagem e na obtenção de resultados.

Neste trabalho foi utilizado o código MCNPX para modelar um acelerador linear Clinac CX Varian e realizar simulações usando um feixe de 6 MV. O objetivo foi determinar a dose percentual de profundidade (PDD - percentage depth dose) a fim de comparar com os resultados das medidas experimentais para validação do cenário.

METODOLOGIA

Nesta pesquisa o código usado foi o MCNPX (Monte Carlo NParticle eXtended), um código computacional que simula a realidade física do transporte de partículas possibilitando a modelagem virtual de cenários e assim validá-los, permitindo também avaliar as doses que os pacientes podem ser submetidos. A versão usada foi a 2.7.0 de abril de 2011. Foi também utilizado o Moritz (RIPER, 2004), um programa que permite a visualização de superfícies tridimensionais. Realizou-se a modelagem de uma sala para o acelerador sendo utilizada a planta do Hospital de Santa Casa de Misericórdia de Sobral (SCMS), para que as dimensões ficassem o mais próximo da realidade, como mostra a imagem 1.

C' A C

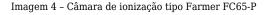
Imagem 1 - Visão superior do desenho da planta da sala

Fonte: MELO (2014).

O equipamento a ser inserido na sala foi um acelerador linear Clinac CX da fabricante Varian, como mostra a imagem 2. Em seguida foi obtida a modelagem do cabeçote do acelerador, que foi cedida por um dos colaboradores do projeto, para um feixe de fótons de 6 MV, a modelagem cedida tratava-se de um acelerador linear 2100C também da fabricante Varian.

Imagem 2 - Acelerador linear Clinac CX da fabricante Varian

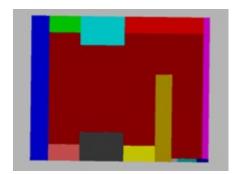
Fonte: Acervo dos autores (2023).



Foi realizada a modelagem do objeto simulador de polimetilmetacrilato – PMMA, preenchido de água com dimensões de 30 x 30 x 30 x 30 cm³, como mostra a imagem 3. Em seguida, foi inserido o cabeçote acelerador linear na sala modelada. Por seguinte, foi modelada a câmara de ionização da fabricante IBA, tipo Farmer, do modelo FC65-P, cujo volume sensível é de 0,65 cm³, como mostra a imagem 4.

Imagem 3 - Simulador de água

Fonte: Acervo do autor (2023).

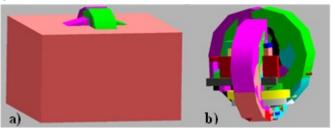

Fonte: IBA (2018).

Posteriormente, foi inserida a câmara de ionização no centro do simulador de água para que fossem realizadas simulações para obtenção das doses para determinar a curva PDP e assim o cenário pudesse ser validado. As doses simuladas foram obtidas inserindo a câmara de ionização no eixo central do objeto simulador, mudando sua posição meio centímetro abaixo a cada simulação em uma distância de trinta centímetros, até chegar em 18 cm e em seguida a cada um centímetro, totalizando assim 48 medições. Assim, após a obtenção do resultado das simulações foi feito o cálculo para obtenção de cada valor da curva PDP, cuja expressão utilizada para encontrar esses valores é dada pela razão entre a dose absorvida medida em um ponto (Dn) e a dose máxima ao longo do eixo central. Essa razão foi multiplicada por 100, obtendo-se assim percentuais de dose absorvida em função da posição (%Dn). %Dn é o percentual dos valores a serem expressos na curva PDP.

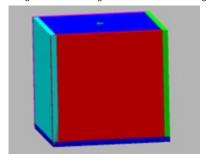
RESULTADOS E DISCUSSÃO

Como resultado, foi realizada a modelagem da sala de radioterapia como mostra imagem 5, de acordo com a planta da sala do Hospital de Santa Casa de Misericórdia de Sobral (SCMS).

Imagem 5 - Visão superior da modelagem da sala de radioterapia


Fonte: Acervo dos autores (2023).

Foi cedida por SANTOS (2019) a modelagem do cabeçote do acelerador linear como mostra a imagem 6. Na imagem 6 (a) vemos a parte externa do cabeçote e na 6 (b) a parte interna. Como apesar de diferentes fabricantes, os linacs possuem suas estruturas semelhantes, a parte física não foi modificada, no entanto, para realizar as simulações no código foi necessário que a fonte e o espectro fossem descritos de acordo com o equipamento usado.


Imagem 6 - Parte interna e externa do cabeçote do acelerador linear modelado

Fonte: SANTOS (2019).

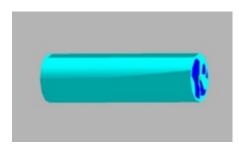
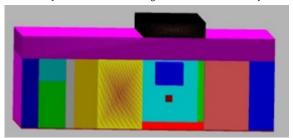

Realizou-se também a modelagem do simulador de água como mostra a imagem 7. Por seguinte, foi modelada a câmara de ionização como mostra a imagem 8.

Imagem 7 - Modelagem do simulador de água

Fonte: Acervo dos autores (2023).


Imagem 8 - Modelagem da câmara de ionização

Fonte: Acervo dos autores (2023).

Posteriormente, foi inserido o cabeçote do acelerador linear, o simulador de água e a câmara de ionização no cenário, como mostra a imagem 9.

Imagem 9 - Inserção do simulador de água e câmara de ionização no cenário

Fonte: Acervo dos autores (2023).

Para que houvesse a validação do cenário foi necessário comparar a curva PDP experimental e simulada. A validação foi realizada para um feixe de 6 MV com um campo de $10x10~\rm cm^2$ com uma distância fonte-superfície de $100~\rm cm$. A curva experimental foi baseada nos valores que foram medidos no hospital de Santa Casa de Misericórdia de Sobral. Estes dados estão expressos na segunda coluna da tabela 1. Para obter a curva simulada, a câmara de ionização foi colocada em determinadas profundidades do eixo central do simulador de água e assim foram realizadas simulações. Os valores obtidos estão expressos na terceira coluna da tabela 1. Após esses valores serem obtidos, foi realizado o cálculo percentual de dose absorvida, os valores encontrados são mostrados na quarta coluna da tabela 1.

Tabela 1 - Tabelas com dados da pesquisa

	Dados experimentais	Resultado simulação	Resultado calculado (%)
Profundidade	10x10	10x10	10x10
0,5	84,5	2,51915E-06	100,0
1,0	97,9	2,49026E-06	98,9
1,6	100,0	2,28743E-06	90,8
2,0	98,9	2,23216E-06	88,6
2,5	97,0	2,17051E-06	86,2

Resumo Expandido - XI ENCONTRO DE INICIAÇÃO CIENTÍFICA - 2023 ISSN: 2447-6161

3,0	94,7	2,18337E-06	86.7
3,5	92,6	2,15501E-06	85,5
4,0	90,5	2,15443E-06	85,5
4,5	88.3	1,99778E-06	79,3
5,0	86,1	1,97884E-06	78,6
5,5	84,0	1,90104E-06	75.5
6,0	82,1	1,83132E-06	72,7
6,5	80,1	1,67199E-06	66,4
7,0	78,1	1,62974E-06	64,7
7,5	76,1	1,52731E-06	60,6
8,0	74,2	1,47129E-06	58,4
8,5	72,2	1,45409E-06	57,7
9,0	70,3	1,44275E-06	57,3
9,5	68,5	1,41845E-06	56,3
10,0	66,5	1,29664E-06	51,5
10,5	64,8	1,18137E-06	46,9
11,0	63,1	1,14118E-06	45,3
11,5	61,4	1,10015E-06	43,7
12,0	59,7	1,07999E-06	42,9
12,5	58,1	1,05124E-06	41,7
13,0	56,6	1,05618E-06	41,9
13,5	55,1	1,00430E-06	39,9
14,0	53,5	9,70280E-07	38,5
14,5	52,0	8,88395E-07	35,3
15,0	50,5	8,05617E-07	32,0
15,5	49,2	7,47375E-07	29,7
16,0	47,9	7,89768E-07	31,4
16,5	46,5	7,33608E-07	29,1
17,0	45,2	6,28799E-07	25,0
17,5	44,1	6,14805E-07	24,4
18,0	42,8	5,86910E-07	23,3
19,0	40,4	5,52275E-07	21,9
20,0	38,3	5,14377E-07	20,4
21,0	36,2	4,65643E-07	18,5
22,0	34,2	4,04463E-07	16,1
23,0	32,4	3,67064E-07	14,6
24,0	30,6	3,31023E-07	13,1
25,0	28,9	3,08031E-07	12,2
26,0	27,4	2,80490E-07	11,1
27,0	25,9	3,03294E-07	12,0
28,0	24,5	3,32228E-07	13,2
29,0	23,2	2,43129E-07	9,7
30.0	22.0	3.89223E-07	15.5

Fonte: Acervo dos autores (2023).

Quando as curvas experimental e simulada foram comparadas, como mostra o gráfico 1, notou-se que as curvas não estavam coincidentes. Observou-se que diferentemente da curva experimental, não havia a dose de profundidade máxima, que é chamada de "build-up" e também que as doses estavam menores do que o esperado. Desta maneira não foi possível validar o cenário. Acredita-se que o problema esteja na fonte geradora do feixe na simulação e pretende-se futuramente realizar ajustes que possibilitem validar o cenário.

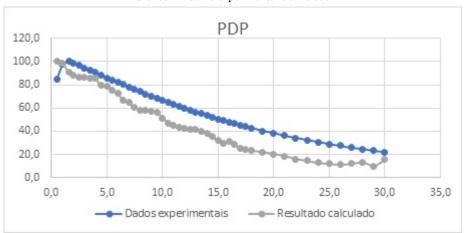


Gráfico 1 - Curva experimental e simulada

Fonte: Acervo dos autores (2023).

CONCLUSÕES

A partir dos resultados encontrados, foram obtidas a modelagem da sala de radioterapia, do simulador de água, da câmara de ionização e o equipamento de radioterapia foi inserido no cenário modelado. Também foram realizadas simulações para definir a curva PDP. Os resultados simulados foram comparados com os experimentais e verificou-se que ainda é necessários novos ajustes para que o cenário seja validado.

AGRADECIMENTOS

Os autores agradecem ao UNILAB pela oportunidade de bolsa, o que permitiu que a primeira autora se dedicasse totalmente a pesquisa e também ao Hospital de Santa Casa de Misericórdia de Sobral (SCMS) pelos dados fornecidos.

REFERÊNCIAS

CANCINO, J. L. B. Modelamento de um Acelerador Linear Varian 600 C/D para Estudo Dosimétrico usando Método de Monte Carlo. Dissertação (Mestrado em Ciências e Técnicas Nucleares) - Universidade Federal de Minas Gerais, Belo Horizonte, 2016.

IARC, 2014, World cancer report 2014. 1a. Lyon, International Agency for Research on Cancer.

IBA. Detectors for RD and AD Rev.3_0718_E. Ino Beam Applications. 2018.

MEDEIROS, M. P. C. Modelagem computacional de um acelerador linear e da sala de radioterapia para cálculo da dose efetiva em pacientes submetidos a tratamento de câncer de próstata. Tese (doutorado) - Universidade Federal do Rio de Janeiro. Programa de Engenharia Nuclear, 2018.

MELO, F. J. Relatório preliminar de análise de segurança - Acelerador linear Varian Clinac CX. Rua Antônio Crisóstomo de Melo, 919 - Sobral - CE: Hospital da Santa Casa de Misericórdia de Sobral, [s.d.], 2014.

RIPER, K. A. V. MORITZ - 'Geometry Tool User' Guide. White Rock Science, Los Alamos, 2004.

SANTOS, W. S.; NEVES, L. P.; PERINI, A. P.; SANTOS, C. J.; BELINATO, B.; SILVA, R. M.V.; SOARES, M. R.; VALERIANO, C. C.; CALDAS,

L. V. E. Computational modelling of cervix uterus radiation procedure using a virtual anthropomorphic phantom and the MCNPX code. Metrologia, Florianópolis, 2019.

