

FAUNA EDÁFICA ASSOCIADA À QUALIDADE ESTRUTURAL DE SOLO EM DIFERENTES MANEJOS AGRÍCOLAS NA REGIÃO DO MACIÇO DE BATURITÉ, CEARÁ

Aurea Pinto Dos Ramos¹ Maria Ivanilda De Aguiar²

RESUMO

A fauna do solo é composta por diversos grupos de invertebrados que vivem pelo menos uma parte de seu ciclo biológico na serapilheira ou abaixo da superfície. Em razão de seu tamanho corporal e/ou hábito comportamental, os organismos da fauna edáfica, transformam o solo de modo significativo, porém, por outro lado, são altamente sensíveis às modificações ambientais, sendo assim, utilizados como bioindicadores. Áreas sob manejo agroecológico podem favorecer maior diversidade do solo, mantendo-o vivo, devido ao não uso de produtos químicos e maior diversidade de plantas. Neste contexto, o presente estudo objetivou estudar a composição, a densidade e a diversidade da macrofauna edáfica em diferentes manejos agrícolas e em condição natural na região do Maciço de Baturité, Ceará. O estudo foi realizado no município de Redenção, em três áreas sob sistema agroflorestal (SAFs), uma de pastagem, uma de vegetação nativa e uma de roçado, onde foram coletadas cinco amostras em cada área, nos períodos seco e chuvoso. Os organismos coletados foram posteriormente triados, contados, identificados e classificados de acordo com seus respectivos grupos taxonômicos. Foram calculados a densidade, riqueza de grupos, índices de diversidade (Shannon) e de uniformidade (Pielou). As áreas dos SAFs e de mata nativa apresentaram melhores resultados de Shannon e Pielou em relação a outras duas. Percebe-se que o manejo agroflorestal favoreceu a conservação do solo favorecendo abundância e uniformidade dos indivíduos da fauna edáfica.

Palavras-chave: Conservação Sistemas Agroflorestais Biologia do solo.

INTRODUÇÃO

O solo é um ecossistema complexo com interligações entre seus componentes, que se caracterizam pelas suas propriedades físicas (infiltração da água, estrutura, densidade e outras), químicas (fertilidade, CTC (capacidade de troca de cátion), pH, teores de nutrientes e outras) e biológicas (biomassa microbiana, respiração do solo, fauna edáfica e outras). O solo é um importante recurso natural, responsável por realizar várias funções ambientais, contribui para a sustentabilidade do ambiente (NETTO et al, 2009). Podemos citar como funções do solo: "sustentar a diversidade biológica, regular o fluxo de água e solutos, degradar, imobilizar e detoxificar compostos orgânicos e inorgânicos e atuar na ciclagem de nutrientes e outros elementos" (SEYBOLD et al., 1998 apud ARAÚJO e MONTEIRO, 2007). A forma como se maneja o solo pode contribui para preservação e/ou melhoria das propriedades, favorecendo que os mesmos desempenhem adequadamente suas funções, bem como, pode deteriorá-las. Assim, as práticas de manejo precisam ser monitoradas por meio das propriedades que representam indicadores de qualidade do solo. Neste sentido, a fauna edáfica é adequadamente utilizada como indicador em processos de recuperação ambiental por possuir intrínseca relação com as características químicas e teor de matéria orgânica do solo. (MOREIRA, 2010).

A fauna edáfica, por meio de suas ações mecânicas contribui na formação de agregados estáveis e constituem uma reserva de nutrientes potencialmente disponíveis para as plantas (SILVA et al., 2006). A formação das estruturas biogênicas por esse grupo de fauna permite o crescimento e desenvolvimento de raízes no solo, permitindo absorção de água e nutrientes na solução do solo.

Por outro lado, a presença dos de seres vivos no solo (fauna edáfica) é determinada pela quantidade de alimento existente no local, bem como pelas condições ambientais e de manejo incorporados ao ambiente (Primavesi, 2002). Assim, espera-se que ambientes onde haja maior diversidade de plantas e, conseguintemente, maiores teores de matéria orgânica no solo favoreçam a quantidade e diversidade de fauna do solo (POGGIANI et al., 1996). Há, também, evidências que a adoção de sistemas agroflorestais proporciona melhor abundância, riqueza e diversidade da fauna edáfica em relação a vegetação nativa, provavelmente devido melhorias nas características químicas do solo e maiores teores de matéria orgânica proporcionados por este manejo (LIMA et al., 2010). Neste contexto, objetivou-se estudar a composição, a abundância e a diversidade da macrofauna edáfica em diferentes manejos agrícolas e em condição natural na região do Maciço de Baturité, Ceará.

METODOLOGIA

O estudo foi desenvolvido na Fazenda Experimental Piroás (FEP), pertencente a Universidade da Integração

Internacional da Lusofonia Afro-Brasileira (UNILAB) e em áreas produtivas de um agricultor situado nos arredores da FEP, em Redenção-CE. A temperatura média anual do município de Redenção-CE varia de 26°C a 28°C, a pluviosidade média é de 1.062,0 mm, com estação chuvosa de janeiro a abril (IPECE, 2012). Foram avaliadas seis áreas, sendo quatro na FEP e duas nas áreas do agricultor Gilson. As áreas da fazenda foram três sob o sistema agroflorestal (SAF): SAF com componente arbóreo típico de mata atlântica, com cultivo de café (SAF_c), SAF composto por vegetação típica de caatinga, com cultivo de arroz (SAF1 e SAF2) e uma área sob a vegetação nativa de caatinga (MATA). Nas áreas do agricultor foram avaliadas uma área sob o pastagem (PAST) e uma de roçado tradicional da região (ROÇ). As coletas foram realizadas nos períodos seco (Outubro à Dezembro de 2018) e chuvoso (Abril à Junho de 2019).

A amostragem da fauna edáfica foi realizada com base no método usado por Aquino (2001), TSBF (Tropical Soil Biology and Fertility), que é um método manual para coleta de macrofauna do solo. Em cada período amostrado, foram coletadas cinco amostras da serapilheira e cinco amostras de solo para cada uma das seis (6) áreas. A serapilheira foi coletada em uma área de 0,0625 m², utilizando uma moldura de 0,25 m de largura x 0,25 m de comprimento, enquanto para o solo foi coletado um monólito de 0,00625 m³ (0,25 m de largura x 0,25 m de comprimento x 0,1 metros de profundidade). As amostras foram levadas ao laboratório de física do solo no Campus dos Palmares pertencente a UNILAB, onde foi realizado a triagem dos indivíduos da fauna edáfica. Após a triagem, os indivíduos coletados foram transferidos para uma solução do álcool 70%, e na sequencia foram identificados. A identificação dos indivíduos presentes nas amostras, foi realizada vertendo o conteúdo dos frascos em placa de Petri e observando os organismos sob microscópio estereoscópio, comparando suas características morfológicas com as características encontradas nos matérias bibliográficos.

O reconhecimento dos grupos taxonômicos foi realizado através de consulta a materiais bibliográficos diversos e consulta aos especialistas da área, de modo que não ocorressem erros, e assim obter informações verídicas quanto à suas ordens. Após identificação dos indivíduos foram contados e classificados em seus respectivos grupos taxonômicos. A partir dos resultados obtidos na serapilheira e no solo foram calculados: abundância dos grupos em número de indivíduos por área e volume, respectivamente (Aquino et al., 2006), riqueza da fauna (número de grupos identificados por área), diversidade e uniformidade.

A diversidade dos grupos da macrofauna do solo, que expressa a relação entre o número de grupos (riqueza de grupos) e a distribuição do número de indivíduos entre os grupos (uniformidade ou equidade), foi estimada utilizando o Índice de Diversidade de Shannon-Weaver (H) e a uniformidade dos grupos de acordo com o Índice de Uniformidade de Pielou (e). O Índice de Diversidade de Shannon-Weaver (H), definido conforme MAGURRAN (2004) é apropriado para o uso em ecologia do solo (NUNES; ARAÚJO FILHO; MENEZES, 2008), pois leva em consideração a riqueza das espécies e sua abundância relativa.

RESULTADOS E DISCUSSÃO

Nos dois períodos avaliados (seco e chuvoso) houve maior quantidade de indivíduos no solo em relação serapilheira para todas as áreas avaliadas (Tabelas 1 e 2). As áreas que apresentaram maiores quantidades (abundância), diversidade e uniformidade, foram as áreas de vegetação nativa (MATA) e as áreas de SAF. Na área de pastagem, apesar de maior nível de compactação pelo pisoteio dos animais, em comparação a do roçado, promoveu maior diversidade (H') e uniformidade (e'). É provável que a menor diversidade e uniformidade observadas no roçado seja devido a queimada realizaram na área para preparo do solo antes do plantio. Os grupos mais encontrados na serapilheira foram Formicidae, Isoptera, Coleoptera e Pseudoscorpionida.

Tabela 1 - Frequência relativa (%) e índices ecológicos dos grupos da fauna edáfica da serapilheira nas áreas sob sistemas agroflorestais, pastagem, roçado e área de caatinga em Redenção-CE, 2018-2019

					Áreas						
Grupos	Período	Seco			Período Chuvoso						
	SAFC	SAF1	SAF2	MATA	SAFC %	SAF1	SAF2	MATA			
Araneae	33,3	0	0	21,4	16,7	25	0	0			
Coleoptera	22,2	0	8,3	14,3	0	0	41,7	16,7			
Dermaptera	0	0	0	14,3	0	0	0	0			
Diptera	0	0	0	0	0	50	0	16,7			
Formicidae	11,1	6,2	91,7	0	16,7	0	0	66,7			
Hymenoptera	11,1	0	0	0	0	0	0	0			
Isopoda	0	0	0	0	16,7	0	0	0			
Isoptera	11,1	93,8	0	0	0	0	0	0			
Larva tricoptera	0	0	0	0	16,7	0	0	0			
Mantodea ninfa	0	0	0	14,3	0	0	0	0			
Não ident	11,1	0	0	0	16,7	25	0	0			
Oligochaeta	0	0	0	0	16,7	0	0	0			
Pseudoscopionida	0	0	0	28,6	0	0	66,7	0			
Outros	0	0	0	7,1	0	0	0	49.9			
N^{o} Total ind. (N)	9	32	12	14	6	4	3	6			
Abundância (ind/m²)	28,8	102,4	38,4	44,8	19,2	12,8	9,6	19,2			
Riqueza Total (S)	6	2	2	6	6	3	2	3			
Shannon (H')	2,42	0,34	0,41	2,47	2,58	1,50	0,92	1,25			
Pielou (e')	0,94	0,34	0,41	0,95	1,00	0,95	0,92	0,79			

SAFC - Área de sistema agroflorestal com cultivo de café. SAF1 - Área de sistema agroflorestal com cultivo de arroz e milho, não irrigado. SAF2 - Área de sistema agroflorestal com cultivo de arroz, irrigado. MATA - Mata nativa de vegetação Caatinga.

Tabela 2 - Frequência relativa (%) e índices ecológicos dos grupos da fauna edáfica do solo nas áreas sob sistemas agroflorestais, pastagem, roçado e área de caatinga em Redenção-CE, 2018-2019

Áreas												
Grupos	Período Seco						Período Chuvoso					
	SAFC	SAF1	SAF2	MAT	PAST	ROÇ	SAFC	SAF1	SAF2	MAT	PAST	ROÇ
					%	·						
Araneae	1.6		o =		0	^	0		4.4	9	4.9	0

Chilopoda	1,2	0	0	1,1	0	0	4,3	2,4	1,4	2,5	0	0
Coleoptera	1,6	6	4,1	1,1	4	0	0,5	2,4	12,7	2,5	0	5,9
Diplopoda	8,0	0	2	3,3	0	66,7	0	0	0	0	0	0
Diptera	0	0	0	0	0	0	1,1	7,1	2,8	4,9	0	5,9
Enchytraeidae	0	0	0	0	0	0	48,1	0	0	1,6	0	0
Formicidae	66,0	26,0	33,3	60,0	2,0	0	1,6	31	21,1	2,5	18	58,8
Isoptera	24,6	52	21,1	21,1	63,4	0	1,6	19	1,4	38,5	62,3	0
Larv.Diptera	0	0	8,2	0	0	0	0	0	0	0	0	0
Oligochaeta	0	0	21,8	0	0	0	36,4	19	54,9	11,5	8,2	0
Não ident	2,0	0	1,4	0	1	33,3	0	0		1,6	1,6	5,9
Symphyla	0	0	0	2,2	0	0	3,2	0	0	0	0	0
Outros	2,2	14	7,4	7	29.4	0	3,3	16,7	4,3	25,4	5	23,5
Nº Total ind.	252	50	147	90	100	3	189	42	70	122	61	16
Abund.(ind/m ³)	8192	1600	4704	2880	3232	96	5984	1344	2272	3904	1952	544
Riqueza Total	12	7	14	13	8	2	13	13	10	20	7	7
Shannon	1,50	1,95	2,66	2,00	1,57	0,92	1,93	2,94	1,99	3,29	1,74	2,02
Pielou	0,42	0,70	0,70	0,54	0,52	0,92	0,52	0,80	0,60	0,76	0,62	0,72

SAFC - Área de sistema agroflorestal com cultivo de café. SAF1 - Área de sistema agroflorestal com cultivo de arroz e milho, não irrigado. SAF2 - Área de sistema agroflorestal com cultivo de arroz, irrigado. MATA - Mata nativa de vegetação Caatinga. PAST - Área de pastagem. ROÇ - Área de roçado (queimado).

No solo, durante o período seco, os indivíduos mais frequentes foram dos grupos Formicidae e Isoptera para a maioria das áreas avaliadas (SAFC, SAF1, SAF2, MAT e PAS), enquanto que no período chuvoso os grupos mais frequentes foram Oligochaeta (SAFC SAF2 e MAT), Enchytraidae (SAFC), Formicidae (SAF1, SAF2 e ROÇ), e Isoptera (SAF1 e MAT) (Tabela 2). Nas áreas SAFC, SAF1, SAF2 e PAS, o número de indivíduos e consequentemente, a abundância foi maior no período seco, quanto para MAT e ROÇ, a abundância foi maior no período seco. De modo geral, as áreas que apresentaram maior abundância, riqueza de grupos, índice de diversidade (H') e de uniformidade (e') foram as áreas da mata nativa (MAT) e as áreas do SAF (SAFC, SAF1 e SAF2), com exceção, do ROÇ no período seco, que apresentou maior uniformidade (e'), porém, este resultado se deve ao baixa riqueza de grupos encontrada nesta área no período seco (Tabela 2).

CONCLUSÕES

Conclui-se que a forma como se maneja o solo interfere diretamente na sua qualidade e capacidade de abrigar a fauna edáfica, pois os solos que não têm práticas conservacionistas apresentaram menores diversidades e quantidades destes, assim como das espécies vegetais. Percebeu-se também que as áreas e SAF não se diferenciaram muito na diversidade e uniformidade com a área da mata nativa, principalmente a área de SAFC, onde apresenta maiores quantidades e diversidade vegetais, assim como melhores condições do solo, como umidade, estrutura e percentagem da área sombreada, que também se assemelham muito a da mata. Conclui-se então que o manejo agroflorestal, contribui positivamente para o solo e o meio ambiente, mantendo suas características biológicas próximas ao nível de áreas que não estejam sob influências diretas

de seres humanos.

AGRADECIMENTOS

Agradeço a oportunidade de ter feito parte deste trabalho que ampliou os meus conhecimentos acerca da fauna do solo, em especial à Pró-reitora de Pesquisa e Pós-graduação, à professora orientadora do projeto Maria Ivanilda de Aguiar, por toda a paciência e força de vontade no meu crescimento académico e à Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB) pela oportunidade do curso superior.

REFERÊNCIAS

AQUINO, A. M. de; CORREIA, M. E. F.; BADEJO, M. A. Amostragem de mesofauna edáfica utilizando Funis de Berlese-Tüllgren modificado. Seropédica: Embrapa Agrobiologia, 2006. 4p. (Embrapa Agrobiologia. Circular Técnica, 17).

AQUINO, A.M. Manual Para Coleta De Macrofauna Do Solo. Seropédica-RJ: Embrapa Agrobiologia, 2001

ARAÚJO, A.S.F.; MONTEIRO, R.T.R. **Indicadores Biológicos De Qualidade Do Solo.** Biosci. J., Uberlândia, v. 23, n. 3, p. 66-75, July./Sept. 2007

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE. Perfil Básico do Município Redenção, 2012. Disponível em: http://www.ipece.ce.gov.br/publicacoes/perfil_basico/pbm-2012/Redencao.pdf

LIMA, S. S.; AQUINO, A. M.; LEITE, L. F. C.; VELÁSQUEZ. E.; LAVELLE, P. Relação entre macrofauna edáfica e atributos químicos do solo em diferentes agroecossistemas. Pesquisa Agropecuária Brasileira., Brasília, v.45, n.3, p.322-331, 2010.

MAGURRAN, A.E. Measuring Biological Diversity. Oxford: Blackwell Science Ltd, 2004, v.1 256 p.

MOREIRA, J.F. Fauna do Solo como Bioindicador no Processo de Revegetação de Áreas de Mineração de Bauxita em Porto Trometas-PA. Seropédica, RJ 2010.

NETTO, I.T., KATO, E., GOEDERT, W. J. Atributos Físicos E Químicos De Um Latossolo Vermelho-

Amarelo Sob Pastagens Com Diferentes Históricos De Uso. 2009. Disponivel em: http://repositorio.unb.br/bitstream/10482/7716/1/ARTIGO_AtributosF%C3%ADsicosQu%C3%ADmicosLatossolo.pdf

NUNES, L. A. P. L.; ARAÚJO FILHO, J. A. de; MENEZES, R. I de Q. Recolonização da fauna edáfica em áreas de Caatinga submetidas a queimadas. Revista Caatinga, v. 21, n. 3, p. 214 220, jul./set. 2008.

POGGIANI, F.; OLIVEIRA, R.E.; CUNHA, G.C. **Práticas de ecologia florestal. Piracicaba**, 1996. p. 1-44. (Documentos Florestais, 16)

PRIMAVESI, A. **Manejo ecológico do solo: a agricultura em regiões tropicais**. São Paulo, Nobel, 2002. 549p.

SILVA, R. F. da.; AQUINO, A. M. de; MERCANTE, F. M.; **GUIMARÃES**, M. de F. **Macrofauna invertebrada do solo sob diferentes sistemas de produção em Latossolo da Região do Cerrado.** Pesquisa Agropecuária Brasileira, v. 41, n. 4, p. 697,704, abr. 2006.